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Tools: SModelS
● The tool was developed by theorists and experimentalists
● It has an active group of collaborators
● It is in constant development

● Largest database of BSM searches:
● 61 ATLAS results
● 64 CMS results
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Tools: SModelS
● The tool was developed by theorists and experimentalists
● It has an active group of collaborators
● It is in constant development

● Largest database of BSM searches:
● 61 ATLAS results
● 64 CMS results

Now included in 
HEPData!
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Tools: SModelS

● Recent developments
● Full statistical models (Pyhf)
● Global analysis combination
● Arbitrary models → graph theory

● Future plans:
● Inclusion of Run 3 results
● More LLP (non-SUSY) results 
● Impact of analysis combination
● ...
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● Currently the largest excess are at ~ 3-4s 

● These are expected due to the huge 
number of searches! (~1200 bins)

Building the Next SM
● The large database of ATLAS and CMS results allow for a meta-analysis:
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● Currently the largest excess are at ~ 3-4s 

● These are expected due to the huge 
number of searches! (~1200 bins)

Building the Next SM
● The large database of ATLAS and CMS results allow for a meta-analysis:

● However, what if:
● Signal is dispersed over many final states (not easily visible by individual 

searches)?
● The Next SM (NSM) does not match any of the UV models considered so far?

→ How to infer the NSM from data?
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Building the Next SM

Random 
changes to the 

protomodel

Test against 
database 
(SModelS)

Model score
(compatibility with data)

Feedback for building 
new modelsS. Kraml, AL, W. Waltenberger, JHEP 03 (2021) 207

● We have built a prototype algorithm based on a MCMC for a dimensional space 
of varying dimensions.

● The algorithm looks for dispersed signals which can be simultaneously 
explained by minimal number of new particles.



André Lessa

Building the Next SM

Random 
changes to the 

protomodel

Test against 
database 
(SModelS)

Model score
(compatibility with data)

Feedback for building 
new modelsS. Kraml, AL, W. Waltenberger, JHEP 03 (2021) 207

● We have built a prototype algorithm based on a MCMC for a dimensional space 
of varying dimensions.

● The algorithm looks for dispersed signals which can be simultaneously 
explained by minimal number of new particles.

● Future plans:
● New version under development
● Reversible-Jump MCMC
● Better statistical interpretation
● Experimental bias
● How to automatically build a Lagragian (FeynRules → UFO)?
● ….
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Effective Field Theories
● A common approach is to make use of EFTs to look for NP on SM measurements. 

However...
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● Is the EFT assumption valid/consistent?

● Are the EFT constraints valid even if the EFT assumption is violated?

● If not, are they too conservative/too aggressive?

● What are we missing by looking only for the on-shell or EFT regimes?
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● Is the EFT assumption valid/consistent?

● Are the EFT constraints valid even if the EFT assumption is violated?

● If not, are they too conservative/too aggressive?

● What are we missing by looking only for the on-shell or EFT regimes?

● What happens in the transition regime?

Effective Field Theories
● A common approach is to make use of EFTs to look for NP on SM measurements. 

However...

EFTOn-shell
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● Is the EFT assumption valid/consistent?

● Are the EFT constraints valid even if the EFT assumption is violated?

● If not, are they too conservative/too aggressive?

● What are we missing by looking only for the on-shell or EFT regimes?

● What happens in the transition regime?

Effective Field Theories
● A common approach is to make use of EFTs to look for NP on SM measurements. 

However...

EFTForm factorsOn-shell
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Beyond EFTs

● New features in SM distributions:
● Broad resonance
● Deficit of events at higher bins 

(negative interference)

● Form factors encode the full kinematical dependence at any energy:

New features not 
captured by EFTs!
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Beyond EFTs

● New features in SM distributions:
● Broad resonance
● Deficit of events at higher bins 

(negative interference)

● Form factors encode the full kinematical dependence at any energy:

New features not 
captured by EFTs!

● Future plans
● New search strategies (Anomaly 

detection?)

● Combining EFT (low energy) and 
form factors (high energy) 
constraints

● Model dependence → generic 
features?

● Other observables?
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Large cross-section Small decay width 
(large lifetime)

+
The small coupling makes 
Y meta-stable (long-lived)!

New Signatures - LLPs

● There are several “minimal” scenarios which lead to LLP signatures.

mDM = 1 MeV

mDM = 10 keV

mDM = 1 GeV
Freeze-in

AL et al, JHEP 02 (2019) 186 J. Heisig, AL, L. Magno, PRD 110 (2024) 1
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New Signatures - LLPs
● Many of these scenarios are not yet fully explored by searches.

● In the last years searches for LLPs have increased considerably at the LHC.

● The collaboration between the experimental and theory communities has 
been key for developing the program.

● LLP Working Group (CERN-LPCC):
● Theory: André Lessa
● ALICE: Mesut Arslandok
● ATLAS: Dominique Trischuk
● CMS: Alberto Escalante del Valle
● FASER: Dave Casper
● LHCb: Gaia Lanfranchi and Andrii Usachov
● MoEDAL: James Pinfold
● SND@LHC: Cristovao Vilela
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New Signatures - LLPs
● Many of these scenarios are not yet fully explored by searches.

● In the last years searches for LLPs have increased considerably at the LHC.

● The collaboration between the experimental and theory communities has 
been key for developing the program.

● LLP Working Group (CERN-LPCC):
● Theory: André Lessa
● ALICE: Mesut Arslandok
● ATLAS: Dominique Trischuk
● CMS: Alberto Escalante del Valle
● FASER: Dave Casper
● LHCb: Gaia Lanfranchi and Andrii Usachov
● MoEDAL: James Pinfold
● SND@LHC: Cristovao Vilela

● Future plans
● New trigger strategies
● Coordination of benchmarks for 

searches
● Complementarity between 

prompt and LLP searches
● New signatures/gaps in coverage
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Backup
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Building the Next SM

● Current run:
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Building the Next SM
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● What happens when we consider complex scenarios? (MSSM)
● Are the EFT constraints valid/competitive?

MSSM
(4-component 

spinors, diagonal 
Higgs basis)

SMEFT 
(Warsaw basis)

Functional methods (CDE)

EFT vs Direct Searches
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OperatorToC++
allows for the numerical 

evaluation of coefficients given 
the input parameters

S. Kraml, AL, S. Prakash, F. Wilsch, arXiv:2506.05201
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EFT vs Direct Searches

S. Kraml, AL, S. Prakash, F. Wilsch, arXiv:2506.05201
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● Future plans
● EFT constraints vs direct searches
● Higgs sector (2HDM) vs EFT
● Multi-scale MSSM

Main collaborators: 
S. Kraml (LPSC-Grenoble)
S. Prakash (IFIC)
F. Wilsch (RWTH-Aachen)
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Tools: SModelS
● What is the real impact of LHC data on BSM models?

Standard Model

LHC

figure from J. Butterworth's talk@LPSC 6
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Tools: SModelS
● What is the real impact of LHC data on BSM models?

Standard Model

LHC

Many (infinite) directions
(models, parameters,...)

figure from J. Butterworth's talk@LPSC

→ Not an easy question!

6
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Simplified Models

SModelS

● SModelS → software tool for collecting experimental results and 
allowing for a quick assessment of constraints to BSM scenarios

Tools: SModelS
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LHC

Simplified Models

SModelS

Slow (~1h)

Fast (~10s)

● SModelS → software tool for collecting experimental results and 
allowing for a quick assessment of constraints to BSM scenarios

Tools: SModelS

7



SModelS: Basics

● Pros:
● Many SMS results have been 

produced by the experimental 
collaborations

● No need for recasting or event 
simulation

● Sometimes the only alternative for 
complex searches

● Very fast!

ATLAS, 
CMS,...

Simplified 
Models

“Data”

(recasting→ analysis code + 
event simulation)

CPU 
expensive

● Tool for reintrepretation of LHC results based on 
rescaling of simplified model (SMS) results:

“Full Model
Space”

SModelS

● Cons:

● The rescaling 
extrapolates/interpolates signal 
efficiencies

● Results are limited by the 
available simplified models

● Results tend to be conservative 
and underestimate the 
experimental sensitivity
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SModelS: Basics
● SModelS performs 3 main tasks:

1.  UV model →  sum of SMS

2. Find the matching results 
in the database

3. Compute constraints 
(limit setting)

● Main approximation:

SMS efficiencies are assumed to be 
driven by the properties of on-shell 
particles →  masses, widths and 
quantum numbers
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SModelS Graphs
● Graph Representation:

● Text Representation:

node number
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● Non-Z2 results:

SModelS v3: Database
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● Two mediator DM

Physics Study: 2MDM

Statistical Combination of ATLAS + CMS
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Building the Next SM
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Building the Next SM
● We have built a prototype algorithm based on a MCMC for a dimensional space 

of varying dimensions.
● The algorithm looks for dispersed signals which can be simultaneously 

explained by minimal number of new particles.

11
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Building the Next SM

Random 
changes to the 

protomodel

Test against 
database 
(SModelS)

Model score
(compatibility with data)

Feedback for building 
new modelsS. Kraml, AL, W. Waltenberger, JHEP 03 (2021) 207

● We have built a prototype algorithm based on a MCMC for a dimensional space 
of varying dimensions.

● The algorithm looks for dispersed signals which can be simultaneously 
explained by minimal number of new particles.

11
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● We have built a prototype algorithm based on a MCMC for a dimensional space 
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● The algorithm looks for dispersed signals which can be simultaneously 
explained by minimal number of new particles.
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Effective Field Theories
● With the increase of data (HL-LHC)

→ SM observables measured at higher precision

12



André Lessa

Effective Field Theories
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→ SM observables measured at higher precision
● A common approach is to make use of EFTs to look for 

NP on SM measurements
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Effective Field Theories

More data
higher precision

● With the increase of data (HL-LHC)
→ SM observables measured at higher precision

● A common approach is to make use of EFTs to look for 
NP on SM measurements

EFT (SM Measurements)On-Shell (BSM Searches)

12
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Beyont EFTs

• Form factors:

EFT 
regime
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